博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Install GPU TensorFlow From Sources w/ Ubuntu 16.04 and Cuda 8.0
阅读量:5990 次
发布时间:2019-06-20

本文共 5502 字,大约阅读时间需要 18 分钟。

In this tutorial I will be going through the process of building the latest TensorFlow from sources for Ubuntu 16.04.  TensorFlow now supports using Cuda 8.0 & CuDNN 5.1 so you can use the pip’s from their  for a much easier install.  If you would like to install into a Anaconda environment the easiest method is to ‘conda install pip’ and just use the pip packages. If you prefer to build from sources using Ubuntu 14.04 please .

In order to use TensorFlow with GPU support you must have a Nvidia graphic card with a minimum  of 3.0.

Getting started I am going to assume you know some of the in Linux.

Install Required Packages

Open a terminal by pressing Ctrl + Alt + T
Paste each line one at a time (without the $) using Shift + Ctrl + V

$ sudo apt-get install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy build-essential python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev

Update & Install Nvidia Drivers

You must also have the 367 (or later) NVidia drivers installed, this can easily be done from Ubuntu’s built in additional drivers after you update your driver packages.

$ sudo add-apt-repository ppa:graphics-drivers/ppa$ sudo apt update

Once installed using additional drivers restart your computer.  If you experience any troubles booting linux or logging in: try disabling fast & safe boot in your bios and modifying your grub boot options to enable nomodeset.

Install Nvidia Toolkit 8.0 & CudNN

Skip if not installing with GPU support

To install the Nvidia Toolkit  download base installation .run file from website.  MAKE SURE YOU SAY NO TO INSTALLING NVIDIA DRIVERS! Also make sure you select yes to creating a symbolic link to your cuda directory.

$ cd ~/Downloads # or directory to where you downloaded file$ sudo sh cuda_8.0.44_linux.run --override # hold s to skip

This will install cuda into: /usr/local/cuda

To install CudNN download  v5.1 for Cuda 8.0 from Nvidia website and extract into /usr/local/cuda via:

$ sudo tar -xzvf cudnn-8.0-linux-x64-v5.1.tgz$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

Then update your bash file:

$ gedit ~/.bashrc

This will open your  in a text editor which you will scroll to the bottom and add these lines:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"export CUDA_HOME=/usr/local/cuda

Once you save and close the text file you can return to your original terminal and type this command to reload your .bashrc file:

$ source ~/.bashrc

Install Bazel

Instructions also on  website

$ echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list$ curl https://storage.googleapis.com/bazel-apt/doc/apt-key.pub.gpg | sudo apt-key add -$ sudo apt-get update$ sudo apt-get install bazel$ sudo apt-get upgrade bazel

Clone TensorFlow

$ cd ~$ git clone https://github.com/tensorflow/tensorflow

Configure TensorFlow Installation

$ cd ~/tensorflow$ ./configure

Use defaults by pressing enter for all except:

Please specify the location of python. [Default is /usr/bin/python]:


For Python 2 use default or If you wish to build for Python 3 enter:

$ /usr/bin/python3.5

Please input the desired Python library path to use. Default is [/usr/local/lib/python2.7/dist-packages]:


For Python 2 use default or If you wish to build for Python 3 enter:

$ /usr/local/lib/python3.5/dist-packages

Unless you have a Radeon graphic card you can say no to OpenCL support. (has anyone tested this? ping me if so!)

Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]:

$ 8.0

Please specify the Cudnn version you want to use. [Leave empty to use system default]:

$ 5

You can find the compute capability of your device at:

If all was done correctly you should see:

INFO: All external dependencies fetched successfully.
Configuration finished

Build TensorFlow

Warning Resource Intensive I recommend having at least 8GB of computer memory.

If you want to build TensorFlow with GPU support enter:

$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

For CPU only enter:

$ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package

Build & Install Pip Package

This will build the pip package required for installing TensorFlow in your /tmp/ folder

$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

To Install Using Python 3 (remove sudo if using a virtualenv)

$ sudo pip3 install /tmp/tensorflow_pkg/tensorflow# with no spaces after tensorflow hit tab before hitting enter to fill in blanks

For Python 2 (remove sudo if using a virtualenv)

$ sudo pip install /tmp/tensorflow_pkg/tensorflow# with no spaces after tensorflow hit tab before hitting enter to fill in blanks

Test Your Installation

Close all your terminals and open a new terminal to test.

$ python # or python3$ import tensorflow as tf$ sess = tf.InteractiveSession()$ sess.close()

TensorFlow also has  on how to do a basic test and a list of common installation problems.

There you have it, you should now have TensorFlow installed on your computer. This tutorial was tested on a fresh install of Ubuntu 16.04 with a GeForce GTX 780 and a GTX 970m.

If you want to give your GPU a workout maybe try building a massive image classifier following this .

本文转自 stock0991 51CTO博客,原文链接:http://blog.51cto.com/qing0991/1890536

转载地址:http://qhnlx.baihongyu.com/

你可能感兴趣的文章
openfire插件开发之完美开发
查看>>
GDI+画图类Graphics的使用
查看>>
Android kxml解析WBXML
查看>>
SQL SERVER特殊行转列案列一则
查看>>
jsp和serverlet的差别
查看>>
c语言中的位移位操作
查看>>
解密gzip压缩的网页数据流(转)
查看>>
vim多标签,多窗口
查看>>
创建数据库
查看>>
JAVA math包
查看>>
CSS常见兼容性问题总结
查看>>
CascadeType
查看>>
微软职位内部推荐-Senior SW Engineer for Application Ecosystem
查看>>
.NET MVC学习笔记(一)
查看>>
[禅悟人生]欲晓声而操千曲, 欲识器而观千剑
查看>>
项目总结笔记系列 Maven Session2
查看>>
Delphi的指针(转)
查看>>
Hibernate,JPA注解@OneToMany_Map
查看>>
Spark Streaming之四:Spark Streaming 与 Kafka 集成分析
查看>>
Hash工具下载地址
查看>>